24,403 research outputs found

    Quantifying and Transferring Contextual Information in Object Detection

    Get PDF
    (c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other work

    Compression of Deep Neural Networks on the Fly

    Full text link
    Thanks to their state-of-the-art performance, deep neural networks are increasingly used for object recognition. To achieve these results, they use millions of parameters to be trained. However, when targeting embedded applications the size of these models becomes problematic. As a consequence, their usage on smartphones or other resource limited devices is prohibited. In this paper we introduce a novel compression method for deep neural networks that is performed during the learning phase. It consists in adding an extra regularization term to the cost function of fully-connected layers. We combine this method with Product Quantization (PQ) of the trained weights for higher savings in storage consumption. We evaluate our method on two data sets (MNIST and CIFAR10), on which we achieve significantly larger compression rates than state-of-the-art methods

    A New HDG Method for Dirichlet Boundary Control of Convection Diffusion PDEs II: Low Regularity

    Get PDF
    In the first part of this work, we analyzed a Dirichlet boundary control problem for an elliptic convection diffusion PDE and proposed a new hybridizable discontinuous Galerkin (HDG) method to approximate the solution. For the case of a 2D polygonal domain, we also proved an optimal superlinear convergence rate for the control under certain assumptions on the domain and on the target state. In this work, we revisit the convergence analysis without these assumptions; in this case, the solution can have low regularity and we use a different analysis approach. We again prove an optimal convergence rate for the control, and present numerical results to illustrate the convergence theory

    Thermal response of Space Shuttle wing during reentry heating

    Get PDF
    A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown
    • …
    corecore